Estudo supramolecular energético e topológico de três N-(3-Clorofenil)-Bromobenzamidas

PE06200620/045

Sergio André Pires (Discente - IFSul Câmpus Pelotas - Engenharia Química - spires93@gmail.com) Patrick Teixeira Campos (Docente Orientador - IFSul Campus Pelotas - Engenharia Química - patrickcampos@pelotas.ifsul.edu.br)

Câmpus Pelotas

JIC JORNADA DE INICIAÇÃO CIENTÍFICA DO INSTITUTO FEDERAL SUL-RIO-GRANDENSE

2021

INTRODUÇÃO

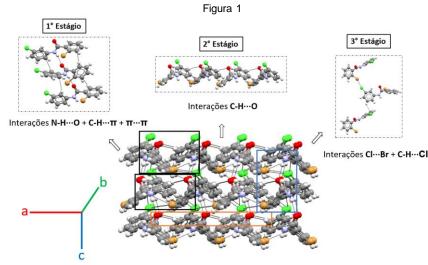
Como as moléculas se agregam em solução para formar um cristal e qual é a relação entre a estrutura molecular e cristalina são algumas das grandes questões da Engenharia de cristais.¹ Diversos estudos nessa área vem propondo uma grande variedade de perspectivas para um melhor entendimento desse processo. ^{2,3}

OBJETIVO

O objetivo desse trabalho foi realizar um estudo energético e topológico das interações intermoleculares presentes nos cristais de três N-(3-Clorofenil)-Bromobenzamidas, com bromo nas posições orto, meta e para. E assim determinar as energias que envolvem a primeira esfera de coordenação, propondo um processo de nucleação.

METODOLOGIA

A partir dos arquivos .CIF obtidos do banco de dados do CCDC, foram determinados os parâmetros topológicos como MCN e área de contato dos compostos usando o software TOPOS®. Dados de energia foram calculados usando o software ORCA4® e imagens do cluster evidenciando interações intermoleculares foram geradas pelo software MERCURY®.


APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

Os três compostos apresentaram um MCN igual a 16. As energias totais das interações na primeira esfera de coordenação variaram entre: -297.64 e -312.46 kcal.mol⁻¹. O somatório das áreas de contato entre as moléculas do cluster ficaram entre: 318.42 e 327.20 Ų. Tomando o composto com X=orto como exemplo temos a **TABELA 1** com as energias de interação (Gc_{M1···Mn}) em Kcal.mol⁻¹ e superfícies de contato (C_{M1···Mn}) em Ų entre a molécula central (M1) e vizinhas (Mn). Assim foram propostas etapas para a nucleação de forma que interações intermoleculares com maior energia estabilizante tendam a ocorrer antes que interações menos robustas.

Tabela 1

	l abela 1			
Dímero	Interação	Gc _{M1···Mn}	C _{M1···Mn}	
M1···M2	Cl1 ···Br1	-0.25	5.51	
M1···M3	C11-H11···O1	-5.79	22.00	
M1···M4	C12-H12···Br1 H11···H2	-3.05	23.35	
M1···M5	C11-H11···Cl1	-1.51	11.35	
M1···M6	H11···H2	-3.05	23.35	
	C12-H12···Br1			
M1···M7	C3-H3···Cl1	-2.97	15.55	
M1···M8	C4-H4···O1	-4.18	25.96	
	C3-H3···Cl1			
M1···M9	C11-H11···Cl1	-1.74	11.35	
M1···M10	C3-H3···Cl1	-2.97	15.55	
	N1- H1···O1			
M1···M11	C5-H5 $\cdots \pi$	-14.82	50.93	
	$\pi B \cdots \pi B$ (T)			
M1···M12	C10-H10···Cl1	-0.90	6.42	
M1···M13	C11-H11···O1	-5.79	22.00	
	N1- H1···O1			
M1···M14	C5-H5 $\cdots \pi$	-14.83	50.93	
	$\pi B \cdots \pi B$ (T)			
M1···M15	Cl1 ···Br1	-0.25	5.51	
M1···M16	C4-H4···O1 C3-H3···Cl1	-4.18	25.96	
M1···M17	C10-H10···Cl1	-0.90	6.42	

Dessa maneira o primeiro estágio da nucleação é ilustrado pela **FIGURA 1** e ocorre pela formação de interações do tipo N-H··O juntamente com π···π e C-H···π. No segundo estágio da nucleação é apresentada a segunda energia mais forte de todo o cluster, com interações C-H ··· O + C-H ··· Cl ocorrendo de maneira simultânea e com o crescimento ao longo do eixo c. No terceiro estágio devem ocorrer fracas interações intermoleculares entre os halogênios Cl ··· Br, ao longo do eixo de crescimento b. Assim observamos a ocorrência do crescimento ao longo dos três eixos a, b e c.

CONCLUSÃO

A partir dos dados obtidos do estudo energético e topológico dos compostos, determinou-se as energias envolvidas na primeira esfera de coordenação bem como as interações intermoleculares de governam o empacotamento cristalino. Dessa forma foi proposto um processo de nucleação para a formação do cristal.

REFERÊNCIÁS BIBLIOGRÁFICAS

- 1. G. R. Desiraju, J. Am. Chem. Soc., 2013, 135, 9952-9967.
- 2 Desiraju, G. R. Crystal Engineering: A Holistic View. Angew. Chem., Int. Ed. 2007, 46, 8342–8356.
- **3** Desiraju, G. R. Crystal Engineering: From Molecule to Crystal. J. Am. Chem. Soc. 2013, 135, 9952–9967.

